Ice phases under ambient and high pressure: Insights from density functional theory
نویسندگان
چکیده
Water is common and plays a crucial role in biological, chemical, and physical processes, but its crystalline or ice state has a complicated structure. In this work, we study the lattice mismatch challenge for ice nucleation on silver iodide, the sublimation energy for different ice phases, and the structural phase-transition pressures of ice, with various density functionals. Our calculations show that the recently developed meta-generalized gradient approximation made simple (MGGA_MS) yields a lattice mismatch (3%) of hexagonal ice (ice Ih) with β-AgI in good agreement with experiment (2%), significantly better than the Perdew-Burke-Ernzerhof (PBE) GGA mismatch (6%). MGGA_MS is a computationally efficient semilocal functional that incorporates intermediate-range van der Waals (vdW) interaction, which, overall, performs well for ice and may be expected to improve upon PBE for liquid water. While MGGA_MS predicts the most realistic volumes and volume changes in the phase transitions of ice Ih to trigonal ice (ice II) and tetragonal ice (ice VIII), a more accurate description of some other properties of the higher-pressure phases (ice II and ice VIII) is provided by some functionals that include long-range vdW corrections (e.g., revised Tao-Perdew-Staroverov-Scuseria+ vdW for sublimation energy and optB88-vdW for transition pressure).
منابع مشابه
Hydrogen bonds and van der waals forces in ice at ambient and high pressures.
The first principles methods, density-functional theory and quantum Monte Carlo, have been used to examine the balance between van der Waals (vdW) forces and hydrogen bonding in ambient and high-pressure phases of ice. At higher pressure, the contribution to the lattice energy from vdW increases and that from hydrogen bonding decreases, leading vdW to have a substantial effect on the transition...
متن کاملOn the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.
Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed st...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملEvidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube.
Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called "no-man's land" under deeply supercooled condition, where only crystalline ices have been observed. H...
متن کامل